Category: "CleanTech"

Sensors Sensors Everywhere

A sensor is anything that can create data about its environs. A more formal definition is

a device that detects or measures a physical property and records, indicates, or otherwise responds to it -New Oxford American Dictionary

A very simple example is a thermocouple.

A picture of a k-type thermocouple showing the standard connector
This is a picture of a k-type thermocouple taken from the FAA under a CC By license

Essentially, two metals are bound together such that when the environment around this wire becomes hotter or colder, the metals produce a voltage. Through this thermoelectric effect, this strain translate into a voltage differential across the wire, producing an electrical signal. A simple voltmeter can read this signal, and one could calibrate that electrical signal to be read as degrees of temperature change.

You likely have one of these in your home thermostat. Perhaps you have a very simple thermostat that turns your home heater on and off.

A picture of an older home thermostat with cover removed
This is a picture of an older model, simple home thermostat, with the cover removed, showing the inner workings, under a CC By license

Perhaps you have a more complex, programmable thermostat that can control the temperature and humidity of your home through a furnace, air conditioner, humidifier/dehumidifier and fans, with different settings for different times of the day and days of the week.

This is a picture of an advanced Honeywell Programmable Thermostat
This is a picture of an advanced Honeywell Programmable Home Thermostat with a green backlit LCD display from the Honeywell website.

Perhaps you have something that looks very simple, but is now part of a complex system that includes not only your home HVAC system, but your computer and smartphone, and computers and analytic software at your utility company.

This is a picture of the very advanced Nest home thermostat.
This is a picture of the very advanced Nest home thermostat, which looks very simple but connects to your computers, smartphones, tablets and more, from the Nest website press downloads.

And this progression is why the Internet of Things is about to explode with Connected Data, with sensors being the new nerve endings of an increasingly intelligent world.

A Section of my Internet of Things mindmap showing the sensor branches
This is a section of my Internet of Things mindmap showing just the sensor branches.

Imagine sensors streaming Connected Data from your home entertainment system, refrigerator & most of its contents, toaster, coffee maker, alarm clock, garden, irrigation, home security, parking on the street in front of your home, traffic flowing by your home to your destination, air quality, and so much more.

We will interact with the world around us in ways that will change our decision making processes in our personal lives, in business, and in the regulatory processes of governments.

If you want to learn more, join IBM and my fellow panelists on Thursday, Sept. 13, from 4 to 5 p.m. ET to chat about cloud and the connected home using hashtag #cloudchat.

The Internet of Things and Change

Will You Be Ready For the M2M World?

The Internet of Things, the Connected World, the Smart Planet… All these terms indicate that the number of devices connected to, communicating through, and building relationships on the Internet has exceeded the number of humans using the Internet. But what does this really mean? Is it about the number of devices, and what devices? Is it about the data, so much data, so fast, so disparate, that will make current big data look like teeny-weeny data?

I think that it's about change: the way we live our lives, the way we conduct business, the way we walk down a street, drive a car, or think about relationships. All will change over the next decade:

  1. Sensors are everywhere. The camera at the traffic light and overseeing the freeway; those are sensors. That new bump in the parking space and new box on the street lamp; those are sensors. From listening for gun shots to monitoring a chicken coop, sensors are cropping up in every area of your life.
  2. Machine to Machine [M2M] relationships will generate connected data that will affect every aspect of your life. Connected Data will be used to fine-tune predictives that will prevent crimes, anticipate your next purchase and take over control of your car to avoid traffic jams. The nascent form of this is already happening: Los Angeles and Santa Cruz police are using PredPol to predict & prevent crimes, location aware ads popping up in your favorite smartphone apps, and Nevada and California are giving driver licenses to robotic cars.
  3. Sustainability isn't about saving the planet, it's about saving money. Saving the planet, reducing dependence on polluting energy sources and reducing waste in landfills are all good things, but they aren't part of the fiduciary responsibilities of most executives. However, Smart Buildings, recycling & composting, and Green IT all increase a company's bottom line and that does fall under every executive's fiduciary goals.

Making Sense of Inter-Connectedness - Introducing My Internet of Things Mind Map

As you can tell from the mindmap associated with this post, I've been thinking about the Internet of things quite a bit lately. It's a natural progression for me. I'm fascinated by all the new sensors, the Connected Data [you heard it here first] that will swamp Big Data, the advances in data management and analytics that will be needed, the impact upon policy and regulation, and the vision of the people and companies bringing about the Internet of Things. But more, as I've been reading and thinking about the SmartPlanet, SmartCities, SmartGrid and SmartPhones, and that ConnectedData, I realized that I can never look at the world around me in the same way again.

Let's look at some of the "facts" [read guesses] that have been written about the IoT.

Looking to the future, Cisco IBSG predicts there will be 25 billion devices connected to the Internet by 2015 and 50 billion by 2020. From The Internet of Things: How the Next Evolution of the Internet Is Changing Everything by Dave Evans, April 2011 [links to PDF]

Between 2011 and 2020 the number of connected devices globally will grow from 9 billion to 24 billion as the benefit of connecting more and varied devices is realised. The Connected Life: A USD4.5 trillion global impact in 2020, [links to PDF] February 2012 by Machine Research for the GSMA.

Two different estimates, one of 24 billion devices of many different types, connected by wireless broadband, and one of 50 billion mobile devices using different types of cellular networks, all by the year 2020. And neither of these estimates include the trillions of other types of things that will deployed over the next eight years. Trillions, not billions, using a variety of personal, local, and wide-area wireless networks.

My Focus Starts at The Intersection of Sensors, Analytics and Smart Cities, with Energy Management and Sustainability

One of the things that will change over time is the way that I look at the Internet of Things. All of it is interesting. But for now, I'll be focusing on the intersection of Sensors, Analytics and Smart Cities, with Energy Management and Sustainability.

Count RFID, Zigbee, MEMS, Smartdust and more traditional sensors, Robots, autonomous vehicles, Healthcare monitors, Smart Meters and more, being distributed in cities, cars, factories, trains, farms, planes, animals and people, and the number of connected devices in 2020 will be in the trillions. Data generated by less than one billion humans using the Internet a few times a day swamped traditional data management & analytics systems, spawning "Big Data". Trillions of devices updating ConnectedData every few nanoseconds will indeed change everything.

Of paramount importance moving forward is determining how to extract business, personal and social value from the intersections, interfaces and interstices of the infrastructure, connected data, objects and people building relationships through the Internet of Things.

Come join me as I look at this convergence and the business impact ahead of us.

Renewables and Smart Grid

We are currently in, at least, the fourth era of growth and interest in renewable energy. The first two of which I'm aware, in the late 1800's into the turn of that century, and in the 1950's, both concentrated on solar (Photovoltaics and Solar Thermal), with some wind power in the first. The third was during the Carter Administration in the 1970's (famously ending when Ronald Reagan ordered the solar panels off the roof of the White House). Disclosure: I was doing photovoltaic research at SES, Inc (now part of Royal Dutch Shell) as a physicaleletrochemist during this time.

During the recent upswing in interest, investment and installations of renewable energy sources (photovoltaics, solar thermal, wind, wave, tidal, geothermal, biomass, etc.) I've been worried that the bubble would soon burst. But today, I've had a thought that encourages me, that maybe renewables will take their place along side coal, oil and nuclear. The reason for this is complex, more social than technical, more due to business than to science.

Many point to the past failures of renewables, of whatever type, due to inefficiencies and to long periods, or infinite time, for a return on the upfront investment. But I think that much of what prevented adoption of renewables is more for social and business reasons. For the most part, the past marketing effort for renewables was to get people off the grid. This was scary for the individual, not justified by the ROI, and inimical to business interests.

Today however, we have the prospect of the Smart Grid. What exactly defines the Smart Grid is still being debated, but here's my hopeful thought. Just as the Internet evolved to combine data, communication and collaboration protocols into what we now term Web2.0 or read-write-web or social media, allowing anyone who desires to do so, become a producer of content as well as a consumer, the Smart Grid will not force users of renewable energy sources off the grid, but will allow whoever desires to do so become a producer as well as a consumer of utility services, starting with electricity, but perhaps evolving to include other utility services as well. Let me also point out that I'm not [just] talking about the individual, I'm talking about communities and small businesses. For example, the Smart Grid would allow a small business such as our local Coastside Scavengers to install an AdaptiveARC reactor, transforming the waste they pick-up from our homes into electricity, and additional cash flow.

This possibility has social, business and economic implications that the previous generations of renewables lacked. This gives me hope. This also strengthens my desire to see workable standards, and working implementations of the Smart Grid(s) - whatever that turns out to really mean.

Cloud Electricity

Tom Raftery of Greenmonk asks "What if electricity were like the Internet?" that is, what if electrical transmission grids distributed electricity in much the same way as the Internet replaced contiguous point-to-point communication circuits (POTS) with communications transmitted via packets that can be routed separately, though different paths, and reassembled at the intended reception point, thus bypassing or supplementing trouble spots.

Tom posits various scenarios, such as excess wind energy generated at night in one region being used to power the grid in another region that is at peak demand, and a read/write electrical grid, where consumers of electricity can also be producers. Tom concludes by asking

What if most of the technologies to make this happen already existed? How long will it be before the utilities embrace the Internet model in the same way the Internet is jumping on the utility model?end quotation
-- Tom Raftery on Greenmonk: The Blog in "What if electricity were like the Internet?"

And actually, as I'm sure Tom knows, much of this technology does exist today, either in production or in a nascent form. There are many smart grid companies forming, mostly selling instrumented (wired, Zigbee, WiBee or other remote feedback technologies) meters that can help either consumers or utility companies monitor or regulate load. In many countries, including the USA, one can run their meter "backwards" if they have power generation capacity where they normally consume electricity, such as photovoltaics, and generate more electricity than they use.

There are however physical limitations to this. Losses over the power lines will likely prevent transmitting or selling electricity half-way around the world. Being an open minded scientist at heart, I hope to see these limitations overcome (high-temperature superconductors maybe). Even given these limitations, better distribution and retransmission of electricity is certainly possible. For example, Microsoft and Google both have recently announced predictive traffic routing for their driving map/direction services. Similar concepts can be applied to the electrical grid anticipate and redistribute power to anticipate loads and reduce generation costs.

More local generation of power (thank you, Tesla, and future examples such as adaptiveARC, coupled with Smart Grids, will definitely bring the world closer to Tom's vision.

I have to run for my meeting and weekly lunch with Earl of Tigo Energy. I'll update links here later.

December 2016
Mon Tue Wed Thu Fri Sat Sun
 << <   > >>
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  

This Web Log (Blog) is intended as a discussion of the business processes, life choices, management challenges, wireless networks, mobile devices, collaboration software, social networks and technical issues facing organizations and individuals: distributed workgroups, digital lifestyle aggregation, telecommuting, road warrior and all ways in which you can live the TeleInterActive Lifestyleâ„¢. It is a service of InterActive Systems & Consulting, Inc.

InterActive Systems & Consulting, Inc. (IASC) performs research in the areas of data analytics, collaboration and remote access.

InterASC Professional Services, a service mark of IASC, provides strategic consulting and project management for data warehousing, business intelligence and collaboration projects using proprietary and open source solutions. We formulate vendor-independent strategies and solutions for information management in an increasingly complex and distributed business environment, allowing secure data analysis and collaboration that provides enterprise information in the most valuable form to the right person, whenever and wherever needed.

TeleInterActive Networks, a service mark of IASC, hosts open source applications for small and medium enterprises including CMS, blogs, wikis, database applications, portals and mobile access. We provide the tools for SME to put their customer at the center of their business, and leverage information management in a way previously reserved for larger organizations.

37.540686772871 -122.516149406889

Search

  XML Feeds

mindmaps

Our current thinking on sensor analytics ecosystems (SAE) bringing together critical solution spaces best addressed by Internet of Things (IoT) and advances in Data Management and Analytics (DMA) is here.

Recent Posts

powered by b2evolution free blog software